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Abstract

Large-scale radiance fields are promising mapping tools
for smart transportation applications like autonomous driv-
ing or drone delivery. But for large-scale scenes, compact
synchronized RGB-D cameras are not applicable due to
limited sensing range, and using separate RGB and depth
sensors inevitably leads to unsynchronized sequences. In-
spired by the recent success of self-calibrating radiance
field training methods that do not require known intrin-
sic or extrinsic parameters, we propose the first solution
that self-calibrates the mismatch between RGB and depth
frames. We leverage the important domain-specific fact that
RGB and depth frames are actually sampled from the same
trajectory and develop a novel implicit network called the
time-pose function. Combining it with a large-scale radi-
ance field leads to an architecture that cascades two implicit
representation networks. To validate its effectiveness, we
construct a diverse and photorealistic dataset that covers
various RGB-D mismatch scenarios. Through a compre-
hensive benchmarking on this dataset, we demonstrate the
flexibility of our method in different scenarios and superior
performance over applicable prior counterparts. Codes,
data, and models will be made publicly available.

1. Introduction
Recently, Neural Radiance Fields [15] have been suc-

cessfully extended to represent large-scale scenes by meth-
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Figure 1. A conceptual demonstration of the comparison between
our problem of interest and other existing problems, and our solu-
tion of learning an implicit time-pose representation.

ods like Block-NeRF [28], UrbanNeRF [19], Mega-NeRF
[30] and BungeeNeRF [33]. Due to their revolutionary
view synthesis quality, these algorithms have the potential
to serve as mapping tools for next-generation visual navi-
gation systems. We envision a future in which SLAM al-
gorithms [43] estimate the poses of agents with an unprece-
dented accuracy, according to the differences between sen-
sory inputs and photorealistic images rendered from radi-
ance fields. However, these methods have not yet system-
atically addressed the issue of using depth as a regulariza-
tion, which has been shown as an effective technique for
NeRF [4, 21].

We note that using RGB-D signals as supervision for
large-scale NeRF training is not trivial due to practical is-
sues. Compact synchronized RGB-D cameras like Mi-
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Figure 2. System Overview Our system optimization process can be divided into two stages. In the first stage, the time-pose function
learns the unknown deep camera poses from an implicit functional relationship between time and camera poses in the RGB sequence. In
the second stage, the complementary poses are used to train an implicit 3D scene representation with depth supervision, and the estimated
poses are simultaneously refined.

crosoft Kinect [40] or Intel Realsense [36] have limited
sensing range, thus are not applicable in smart transporta-
tion applications like autonomous driving or drone deliv-
ery. Using asynchronous RGB and depth sensors, on the
other hand, brings substantially more complexities as the
transformation matrices between RGB and depth frames
need to be estimated. We compare our problem of inter-
est with other existing problems of widespread concern in
figure 1: (a) RGB-D calibration methods [7] estimate the
transformation relationship between the depth camera and
the RGB camera, allowing point-to-point correspondence
between depth and RGB maps. (b) Given continuously ac-
quired RGB or depth maps, RGB-based SLAMs [3, 5, 17]
and depth-based SLAMs [18, 34] estimate the transfer ma-
trices {Tij} between adjacent frames. (c) Our problem of
interest estimates the camera poses {Ti} of the depth se-
quence by learning the trajectory prior from the timestamp-
pose pairs of the RGB sequence.

Inspired by the success of recent NeRF methods that op-
timize the radiance field and camera intrinsic/extrinsic pa-
rameters jointly [7, 11], we aim to develop a method that
self-calibrates the mismatch between RGB-D frames au-
tomatically while optimizing the radiance field which we
name it as AsyncNeRF. We notice that there exists a natu-
ral solution to this setting: treating RGB and depth frames
separately as captured by cameras with a missing modal-
ity at certain timestamps. As such, former methods like
BARF [11] can be readily extended to this scenario. How-
ever, this baseline method fails to leverage a useful domain-
specific prior in this problem: The RGB and depth cameras
actually go over the same continuous underlying trajectory.

To this end, we propose to use a novel time-pose func-
tion to model this prior, which maps a timestamp to a 6-
DoF camera pose. Just like the way that distance and radi-
ance fields approximate functions with 3D/5D inputs, this
time-pose function approximates a function that takes the
1D timestamp as input and outputs a transformation in the

SE(3) manifold. In other words, this time-pose function
is also an implicit representation network. We combine it
with a city-scale radiance field to form a cascaded architec-
ture as shown in figure 2. As such, training this architec-
ture can simultaneously build a city-scale radiance field for
scene mapping and calibrate the mismatch between RGB-D
frames.

To summarize, we have the following contributions:

• We formalize a new important problem: training city-
scale neural radiance fields from asynchronous RGB-
D sequences, which is deeply rooted in practical issues
encountered in real-world applications.

• We identify an important domain-specific prior in this
problem: RGB-D frames are sampled from the same
underlying trajectory. We instantiate this prior into a
novel time-pose function and develop a cascaded im-
plicit representation network.

• In order to systematically study the problem, we build
a photo realistically rendered synthetic dataset that
mimics different types of mismatch.

• Through a comprehensive benchmarking on this new
dataset, we demonstrate that our method can promote
mapping performance over strong prior arts. We re-
lease our codes, data, and models.

2. Related Works
Neural Implicit Representations NeRF [15] has shown
great success in neural reconstruction and rendering, but
its capacity in modeling large-scale unbounded 3D scenes
is limited due to the lack of geometry supervision or prior
information.

With the integrated positional encoding (IPE) represen-
tation of the volume covered by each conical frustum, Mip-
NeRF [2] efficiently renders anti-aliased conical frustums
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instead of rays, which reduces objectionable aliasing ar-
tifacts. NeRF++ [38] separately models foreground and
background representations, and samples rays respectively
to address the challenge of modeling unbounded 3D scenes.
NeRF-W [14] introduces appearance and transient embed-
ding to remedy the weakness subject to the variable illu-
mination or transient occluders. The adoption in Instant-
NGP [16] of the multi-resolution hash table with trainable
feature vectors enables NeRF to learn high-quality neural
graphics primitives.

Block-NeRF [28] and Mega-NeRF [30] decompose the
scene spatially into individually trained NeRFs, enabling
the scene representation to scale to arbitrarily large en-
vironments. Bungee-NeRF [33] focuses on a multi-scale
data model where large changes in imagery are observed
at drastically different scales up to satellite level. By in-
troducing LiDAR and sky modeling and compensating for
varying exposure, Urban Radiance Fields [19] extends the
NeRF model to produce notable 3D surface reconstructions
and synthesize high-quality novel views in outdoor environ-
ments.

In addition, with the help of dense depth supervision [4]
or prior information [21], NeRF has achieved amazing re-
sults in both novel view synthesis and depth prediction, yet
it is difficult to scale into large-scale outdoor scenes.
Self-calibration There are a variety of SLAM systems for
reconstructing the scene by jointly estimating camera pa-
rameters and 3D geometries. ORB-SLAM [17] recon-
structs scene and estimates camera poses in real-time by
associating feature correspondences, while DSO [31] and
LSD-SLAM [6] achieve comparable results by minimizing
a photometric loss. SfM systems [12, 22] are capable of
simultaneously calibrating the intrinsic and extrinsic cam-
era parameters and reconstructing the scene. Lidar-Camera
fused SLAMs [24,37,42] align the correspondence between
points and visual features in the unit sphere around the cam-
era center, which facilitates the pose estimation accuracy
and registration time.

With the burgeoning research in NeRF-based 3D scene
reconstruction and rendering, recent works estimate camera
parameters on top of NeRF. Given a trained NeRF model,
iNeRF [35] is able to perform mesh-free, RGB-only 6DoF
pose estimation according to the observed image. Thanks to
the temporal consistency of RGB and depth, iMAP [27] and
NICE-SLAM [43] accomplished significant results in both
high-fidelity reconstruction and pose estimation in the room
in real-time. Martin-Brualla et al. [1] propose hybrid im-
plicit fields incorporating TSDFs and radiance fields, which
improves the overall reconstruction quality of appearance
and geometry while optimizing the camera poses. Differ-
ent from the NeRF-based methods, NeRF−− [32] and SC-
NeRF [7] jointly optimize camera poses and intrinsics in
training. NeRF−− [32] can only work with forward-facing

scenes. The SCNeRF [7] is applicable to generic cameras
with arbitrary non-linear distortions. Both of them are not
scalable to large-scale scenes and are not applicable to the
setting of the RGB-D mismatching scenarios.

3. Method
Our system input consists of a set of RGB images

{Ii}Nc
i=1, a set of depth maps {Di}Nd

i=1, a set of camera poses
{Tc

i}
Nc
i=1 that are synchronized in time with the RGB im-

ages, and the EXIF information from which we obtain the
timestamps {ti}Nc+Nd

i=1 of the images and the correspond-
ing camera intrinsics. The RGB images and depth maps
are both captured with a drone on the same trajectory, but
they are not necessarily synchronized in terms of acquisi-
tion time.

The problem of interest can be formulated as a two-stage
optimization problem, as shown in Fig. 3. First, we predict
the initial values of the camera poses {T̂d

j} corresponding
to the depth maps using an implicit functional relationship
(shown in equation 1) between the capture time and the
camera poses from the RGB images. Second, we learn the
scene representation using posed RGB images, and simul-
taneously optimize the inaccurate initial values of the depth
map poses input in the previous stage.

TΘ : ti → T̂i = [ xi, qi ], (1)

where ti is the input of this function, which is the times-
tamp, T̂i denotes the output camera pose represented by a
translation vector xi and a rotation vector qi, and Θ is the
function parameters.

Optimization
Flow

f

i

ii
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ivf

i

ii

iii

iv

Figure 3. Optimization Pipeline. (i) the time-pose function learns
the embedded trajectory prior from the RGB sequence and predicts
the depth camera poses; (ii), (iii) the ground-truth RGB camera
poses and the estimated depth camera poses are used in learning
the 3D scene representation that generates observed RGB images
and depth maps at novel perspective (iv).

We introduce in section 3.1 and 3.2 a method of generat-
ing initial poses of depth maps using an implicit time-pose
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function of the trajectory prior. The functional relationship
is learned from the time-pose pairs in the RGB sequence.
In section 3.3 we introduce our method for mapping and
optimizing the predicted poses simultaneously.

3.1. Time-Pose Function

In this part, we introduce the time-pose function that es-
timates the camera poses.

We represent the camera trajectory as an implicit time-
pose function whose input is a timestamp, and whose output
is a 6-DoF camera pose. The pose output consists of a 3D
translation vector x̂i and a 4-D rotation vector represented
as a quaternion q̂i.
Network Overview The time-pose function is approx-
imated with a 1-dimensional multi-resolution hash grid
{G(l)

θ }Ll=1, followed by an MLP structureFΘ. The hash grid
consists of L levels of separate feature grids with trainable
hash encodings [16].

When querying the camera pose T̂i for an arbitrary
timestamp ti that is in the interval of the timestamps, we
sample the hash encodings from each grid layer and per-
form quadratic interpolation on the extracted encodings to
obtain a feature vector Vi. After obtaining the interpolated
feature vector, a shared MLP is used to process the input,
whose output is then fed into two separated fully connected
layers to predict the output translation x̂i and rotation q̂i
vector respectively. The forward pass can be expressed in
the following equations:

Vi = FΘ

(
{interp(h(ti, πl), Glθ}Ll=1

)
, (2)

T̂i = [x̂i, q̂i] = ltrans(Vi,Θtrans), lrot(Vi,Θrot), (3)

where interp denotes the interpolation operator, h is the hash
function parameterized by πl, ltrans, lrot are the two fully
connected layer, where Θtrans,Θrot represent the network
parameters respectively.
Depth-pose Prediction Since both the depth maps and the
RGB images are collected by the same drone in the same
flight, they have an almost identical trajectory in tempo-
ral and spatial terms except for the difference in the place-
ment of the two sensors on the aircraft. Therefore we can
directly predict the poses corresponding to the depth se-
quence timestamps using the implicit time-pose function we
learned in the RGB sequence with a pre-defined pose trans-
formation Tsensor between sensor positions.

3.2. Optimizing Time-Pose Function

The most common choices to represent rotation for op-
timizing camera poses are to use rotation matrices [35] or
Euler-angles [26, 29]. However, they are not continuous for
representing rotation [41] for their non-homeomorphic rep-
resentation space to SO(3). We chose to use unit quaternion
as our raw representation because arbitrary 4-D values are

easily mapped to legitimate rotations by normalizing them
to unit length [9].

To optimize the time-pose function, we propose the fol-
lowing objective function:

L = λtransLtrans + λrotLrot + λspeedLspeed, (4)

where λtrans, λrot, λgrad are the weighting parameters.
Direct Optimization of Translation and Rotation We di-
rectly optimize the translation and the rotation vector in the
Euclidean space by evaluating the mean square error (MSE)
of the estimated camera poses and the ground-truth pose
vectors:

Ltrans = MSE(x({ti}), x̂({ti})) =
1

n

n∑
i=1

(xi − x̂i)2, (5)

Lrot = MSE(q({ti}), q̂({ti})) =
1

n

n∑
i=1

(qi − q̂i)2. (6)

Since x and q are in different units, the scaling factor
λtrans and λrot played an important role to balance the losses.
To prevent translation and rotation from influencing each
other in training and to tap into possible mutual facilitation,
we made the weighting factors learnable [8].
Gradient Optimization of Motion Speed Observing that
the time-pose function is essentially a function of displace-
ment and angular displacement with respect to time, we can
use the average velocity calculated from the ground-truth
camera pose to supervise the gradient of the network out-
put. Since the velocity variation is small and the angular
velocity variation is relatively larger in the scenes captured
by the drone, only the average velocity is used to supervise
the neural network:

Lgrad = MSE(v(ti), v̂(ti)) =
1

n

n∑
i=1

(v(ti)−
∂x̂

∂t
(ti))

2, (7)

where v(ti) = ∂x
∂t

∣∣
t=ti
≈ xi−xi−1

ti−ti−1
.

3.3. Learning Large-scale Implicit Fields with Joint
Time-Pose Function Error Compensation

While the time-pose function provides a great initial
value for the mapping stage, there still exists noticeable
error in some of the outlying frames. In this section, we
describe how we perform simultaneous mapping and pose
optimization, which compensates for the error of the time-
pose function. We partition the city scene map into a series
of equal-sized blocks in terms of spatial scope, and each
block learns its scene representation with an implicit field
separately, while the camera poses T̂ di corresponding to the
depth map is also optimized in the training process.
Scene Representation We represent the scene model as a
series of implicit functions mapping from spatial point co-
ordinates and viewing directions to the radiance values as
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Figure 4. Visualization of our proposed AUS dataset

{f (i)
MLP}

Nx×Ny

i=1 , where Nx, Ny denotes the spatial grid size.
Each implicit function represents a geographic region with
xcentroid
i as its centroid.

f (k)
MLP(γ(α)(xpts),d, l

(a))→ (ĉ, σ), (8)

where k = arg min
j
||xpts − xcentroid

j ||2.

For view synthesis, we adopt volume rendering tech-
niques that are proven to be powerful. To be specific, we
sample a set of points for each emitted camera ray in a
coarse-to-fine manner [15] and accumulate the radiance and
the ray-depth along the corresponding ray to calculate the
rendered color Î and depth D̂. To obtain the radiance of a
spatial point xpts, we use the nearest scene model for pre-
diction. A set of per-image appearance embedding l(a) [14]
is also optimized simultaneously in the training.

Î(o,d) =

∫ far

near
T (t)σ(k)(x(t)) · c(k)(x(t),d)dt, (9)

D̂(o,d) =

∫ far

near
T (t)σ(k)(x(t)) · tdt, (10)

where o and d denote the position and orientation of
the sampled ray, x(t) = o + td represents the sam-
pled point coordinates in the world space, and T (t) =

exp
(
−
∫ t

near σ
(k)(x(s))ds

)
is the accumulated transmit-

tance.
Optimization We jointly optimize the inaccurate camera
poses and the scene mapping: When fitting parameters
Θ

(k)
MLP of the scene representation, the estimated depth cam-

era poses T̂i ∈ SE(3) (where t ∈ R3 and q ∈ SO(3)) will
be simultaneously optimized on the manifold:

Θ̂MLP, T̂ = argmin
T∈SE(3),Θ

L(T,ΘMLP | T0, {Ii}, {Di}), (11)

where L is the objective function, and T0 is the initial pose
input from the time-pose function .

To train the implicit expression to obtain realistic RGB
rendering maps and accurate depth map estimation, we used
the objective function proposed in equation 12.

L = λcolorMSE(I, Î) + λdepth(α0)MSE(D, D̂), (12)

where λcolor and λdepth(α0) are weighting hyper-parameters
for color and depth loss, in which the depth loss weight
starts to grow from zero gradually with training process α0.

To compensate for the error from the time-pose function
extracted poses, we further optimize the estimated poses
T̂ by applying a set of trainable pose correction terms
{ξ(i)
x , ξ

(i)
q } (where ξ(i)

q ∈ R3, ξ
(i)
q ∈ so(3)) to the initial

poses {x̂0,i, q̂0,i} in each iteration:

q̂′i = Exp(ξi) · q̂0,i, (13)

x̂′i = ξ(i)
x + x̂0,i (14)

where Exp(·) is the exponential mapping that uses the Ro-
drigues formula [20] to map rotation vectors in so(3) to ro-
tation matrices.
Dynamic Low-pass Filter As stated in BARF [11], in solv-
ing the positional calibration problem, smoother signals can
predict more consistent displacements than complex sig-
nals, which can easily lead to sub-optimal optimization re-
sults. The positional encoding in the traditional NeRF ren-
dering significantly improves the synthesized view in terms
of high-frequency details. Using a low-pass filter that can
weaken the effect of position coding will have a similar ef-
fect as smoothing. Thus, a dynamic low-pass filter is used in
AsyncNeRF in the joint-optimization stage to help optimize
inaccurate depth frame poses.

4. Experiments
In this section, we show in the effectiveness of our two-

staged pipeline. We first introduce the experiment setup in
section 4.1 and 4.2. In section 4.3, we qualitatively and
quantitatively evaluate our proposed methods.

5



Scene Method
Time-Pose Function Novel-view Synthesis Depth Estimation Pose Optimization

Rotation(◦) ↓ Translation (m) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑ Rotation (◦) ↓ Translation (m) ↓

NY
simple

NeRF-W 23.06 0.7946 0.2318 16.74 0.2149 84.62% 93.99% 99.68%
Mega-NeRF 0.6601 1.8400 23.48 0.8744 0.1738 19.74 0.2411 82.76% 93.25% 96.71% 0.1336 0.3394
Ours 24.77 0.8469 0.1661 5.50 0.0690 97.78% 99.39% 99.85%

NY
hard

NeRF-W 22.88 0.7899 0.2574 9.97 0.2027 86.04% 94.63% 97.31%
Mega-NeRF 0.5908 1.1200 23.09 0.7860 0.2339 10.07 0.2117 87.59% 95.64% 97.47% 0.0890 0.5644
Ours 23.99 0.8162 0.2218 7.03 0.1672 94.91% 97.21% 98.33%

NY
Manual

NeRF-W 24.02 0.8471 0.1854 25.48 0.3715 69.85% 81.71% 87.18%
Mega-NeRF 3.6980 0.4605 24.03 0.8522 0.1683 42.15 0.43 69.99% 77.43% 84.43% 1.4740 0.1997
Ours 24.24 0.8406 0.1621 5.93 0.0085 91.85% 98.08% 99.48%

SF
simple

NeRF-W 22.12 0.8297 0.2528 31.12 0.1988 86.14% 90.59% 98.17%
Mega-NeRF 0.1700 1.3380 19.99 0.8294 0.2252 32.17 0.2188 86.38% 92.12% 95.04% 0.0465 0.3193
Ours 22.70 0.8336 0.2067 7.26 0.0669 97.97% 99.30% 99.72%

SF
hard

NeRF-W 17.17 0.5564 0.4489 23.58 0.1429 81.14% 91.36% 96.34%
Mega-NeRF 0.6656 1.4488 19.77 0.7112 0.3302 26.02 0.1666 86.20% 94.92% 96.45% 0.4064 1.0880
Ours 20.49 0.7164 0.3344 9.99 0.0992 93.68% 97.78% 99.72%

SF
Manual

NeRF-W 18.33 0.5968 0.3878 20.09 0.2214 78.14% 92.67% 96.29%
Mega-NeRF 0.6539 0.9393 21.83 0.6596 0.2304 12.48 0.1286 93.17% 97.18% 99.01% 0.0191 0.6632
Ours 23.24 0.8291 0.2450 5.66 0.0706 97.37% 99.31% 99.67%

Bridge
NeRF-W 26.79 0.8053 0.2438 131.88 1.2277 53.76% 61.57% 58.98%
Mega-NeRF 1.5108 0.9514 27.98 0.8674 0.1548 120.41 1.3246 69.10% 72.54% 73.17% 0.4893 0.5709
Ours 29.06 0.8751 0.1952 26.56 0.3248 93.24% 96.32% 98.26%

Town
NeRF-W 21.32 0.6208 0.4088 132.70 1.4640 44.89% 55.68% 57.90%
Mega-NeRF 0.6774 1.3460 24.69 0.7305 0.3103 129.50 1.4240 54.54% 59.18% 57.90% 0.3633 0.8364
Ours 25.32 0.7675 0.2631 15.61 0.4632 91.92% 96.89% 98.49%

School
NeRF-W 19.69 0.5715 0.44527 88.83 0.9365 61.73% 72.58% 75.80%
Mega-NeRF 0.7031 0.8780 25.57 0.7739 0.3191 63.10 0.7651 77.18% 85.02% 86.69% 0.6807 0.5600
Ours 26.51 0.7971 0.3175 21.19 0.2083 92.87% 95.78% 97.51%

Castle
NeRF-W 22.63 0.7443 0.2557 78.18 0.8651 75.72% 79.26% 81.11%
Mega-NeRF 1.0525 0.3772 28.06 0.9053 0.1159 54.99 0.6167 79.69% 83.59% 87.43% 0.3822 0.1200
Ours 28.21 0.8976 0.1113 16.66 0.3565 93.12% 97.23% 98.45%

Table 1. Quantitative results on the localization quality of the time-pose Function, the mapping quality, and the effect of the pose
optimization in the mapping stage. The time-pose function successfully localized the depth camera poses. The scene representation
network achieves high-quality novel view synthesis results and accurate depth estimation while further compensating for the depth pose
error.

4.1. Datasets

We evaluate our method against our proposed Asyn-
chronous Urban Scene (AUS) dataset (Figure 4). The AUS
dataset is generated from a simulator. With loaded scene
models, the simulator can create asynchronous RGB-D se-
quences that mimic real-world asynchronous sequences.
The proposed dataset consists of 2 realistic scenes and 4
virtual scenes. The former uses the New York and San
Francisco city scenes provided by Kirill Sibiriakov [25],
in which AUS-NewYork covers a 250 × 150m2 area with
many detailed buildings and AUS-SanFrancisco consists of
a 500×250m2 area near the Golden Gate Bridge, while the
latter uses the simulation model files provided in the Ur-
banScene3D dataset [13]. We make use of the physical en-
gine of Unreal Engine together with AirSim [23] to model
physical properties and use three types of trajectory which
consists of a Zig-Zag trajectory, a more complex planned
random trajectory, and a complex manual controlled trajec-
tory. In virtual scenes, we only provide manually controlled
trajectories, since the scene sizes are relatively smaller.

In real scenarios, RGB cameras and LiDAR are usu-
ally not aligned in time, so we sample raw RGB-D se-
quences in the simulator at a higher frequency (50fps) and
re-sampled them with different starting frames to get simi-

Raw sequence

Sampled RGB

offset=10%

offset=50%

Random offset

RGB-D

… …

fixed offset

unfixed offset

Figure 5. Visual demonstration of the sampling strategies. We
sample one RGB frame from every 5 frames of raw RGB-D data.
We calculate the depth frame sampling time by adding different
offsets to the RGB frame timestamps. Two types of offsets are
included in the AUS dataset: (1) fixed offsets of 10%-50% of the
time interval between two adjacent RGB frames (5 traces in total);
(2) unfixed offset by random.

lar asynchronous RGB-D sequences. To further increase the
realism, we added random perturbations to the fixed offsets.
The sampling method is shown in figure 5.

4.2. Implementation Details

Time-Pose Function In our experiments, we maintain a
multi-resolution feature grid with L = 2, concatenate the
interpolated feature vectors from different grid layers to-
gether and process through a shallow MLP of 5 layers with
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Figure 6. Qualitative Results. Async-NeRF can render photo-realistic novel views and the best depth estimation results.

1024 neurons in each layer. We use a spatial hash func-
tion h(l)(x) = bxc ⊕ πl mod Nl for each layer of the
grid, where ⊕ denotes the bit-wise XOR operation, Nl is

the number of feature vectors in layer l, and πl is the se-
lected large prime number. In our experiments, we set
π0 = 1, π1 = 2, 654, 435, 761. We use the Adam [10] op-
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timizer with an initial learning rate of 5 × 10−4 decaying
exponentially to 5×10−5. The initial weighting parameters
for optimizing the time-pose function are set to a default of
λtrans = 1, λrot = 1, and λspeed = 10−3.
Joint Optimization We follow the spatial partitioning
method from Mega-NeRF [30]. We train all models for
500K iterations and render a batch of 1024 rays at each
step, with a learning rate of 5× 10−4 decaying to 5× 10−5

for the scene representation networks, and 1 × 10−6 de-
caying to 1 × 10−7 for the pose optimization. The hyper-
parameters for each loss in this stage are set to λcolor = 1,
and λdepth(α0) = 10−3 · α0.

4.3. Results

We evaluate our proposed Async-NeRF against NeRFW
[14] and city-scale Mega-NeRF [30]. We present the quan-
titative results in table 1.
Time-Pose Function We evaluate pose error to demonstrate
the ability of the time-pose function to localize from time-
pose sequences. As shown in the table, our methods can
achieve an average pose accuracy of less than 1.5m in trans-
lation and 2◦ in rotation.
Mapping The standard metrics for novel view synthesis and
depth estimation are used for evaluation. For view syn-
thesis, metrics including PSNR, SSIM, and the VGG im-
plementation of LPIPS [39] is used. For depth estimation,
RMSE, RMSE log, δ1, δ2, and δ3 are used. We also present
the mapping results qualitatively in figure 6. We show that
our methods can synthesize photo-realistic novel views with
comparable quality to the recent state-of-the-art methods.
Our method significantly outperforms current RGB-based
methods for depth estimation.

4.4. Ablation Studies

Time-Pose Function Network Structure We evaluate our
methods against different network structures on localiza-
tion accuracy: (a)Pure MLP structure: straightly process
the input timestamps with an MLP. (b)1-D Feature Grid:
maintain a feature vector for each second in the timestamp
span. (c)Ours: our proposed 1-D multi-resolution hash grid
with different layers of resolution.

The results (Table 2) show that our proposed multi-
resolution outperforms other network structures in accu-
racy.
Ablation of the Speed Optimization We compared the lo-
calization accuracy and optimization time of our method
with and without the gradient optimization of motion speed.
Quantitative results are listed in table 2.
Ablation of Pose Error Compensation We train a Mega-
NeRF [30] with depth supervision from the ground-truth
depth maps and the depth camera pose output from the time-
pose function and compare its mapping results with our pro-
posed method. From the evaluation results (Table 3), we

Method rotation ◦ translation m
mean median mean median

MLP 26.62 17.53 8.23 7.5
Feature Grid 15.86 14.56 8.53 7.48
Ours (L=1) 24.24 12.99 9.2 8.01
Ours w/o speed constraint 12.96 11.21 19.95 12.28
Ours 11.36 11.17 6.29 4.03

Table 2. Result of the ablation on different network structures and
the use of speed optimization

Scene Ours Mega-NeRF Mega-NeRF-Depth
PSNR RMSE PSNR RMSE PSNR RMSE

NY 24.24 5.93 24.025 42.15 19.701 15.94
SF 22.6985 7.26 19.9957 32.1686 19.0666 11.3864
Bridge 29.0644 26.55 27.9767 120.41 22.3456 96.16
Town 25.315 15.61 24.6925 129.5 20.135 81.99
School 26.51 21.192 25.5729 63.1047 21.9129 42.74
Castle 28.2157 16.6617 28.0643 54.9895 23.23 38.8983

Table 3. Result of the ablation of error compensation

find that depth supervision with errors can improve Mega-
NeRF’s effectiveness on depth prediction, but incorrect ge-
ometric information in turn affects the performance of the
rendering network.

offset rotation ◦ translation m

mean median mean median

10% 0.6578 0.2590 3.4248 1.8818
20% 0.9422 0.5516 4.9643 3.898
30% 1.2383 0.7914 6.4142 5.7807
40% 1.4141 0.7538 7.2644 6.617
50% 1.4984 0.8419 5.1704 6.5162

random 1.1228 0.5155 5.1704 4.0544

Table 4. Result of the ablation of different sampling offset

Ablation of Different Sampling Offset We compare the
localization accuracy of implicit trajectory representations
trained with RGB poses in predicting depth camera poses
under different sampling offsets. We trained a time-pose
function with a sparse set of time-pose pairs to amplify the
differences in quantitative results (Table 4).

5. Conclusion

We present Async-NeRF, a pipeline that uses an im-
plicit functional relationship between time-pose to calibrate
RGB-D poses and train a large-scale implicit scene rep-
resentation. Our experiments show that Async-NeRF can
effectively register depth camera poses by leveraging the
trajectory prior embedded in RGB time-pose relationship.
Meantime, Async-NeRF learns the 3D scene representation
for photo-realistic novel view synthesis and accurate depth
estimations.
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